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1. INTRODUCTION
Tensegrity is a principle based on self-stressed and
auto-stable structures composed by isolated
components in compression inside a net of continuous
tension, in such a way that the compressed members
(usually bars or struts) do not touch each other and the
pre-stressed tensioned members (usually wires or
even tensile membranes) delineate the system
spatially [1]. Based on this concept, double-layer
tensegrity grids (DLTGs) are defined as tensegrity
spatial systems containing two parallel horizontal
networks of members in tension (top and bottom
chords), whose nodes are linked by vertical and/or
inclined bracing members in compression and tension.

These kinds of structures are being taken into account
in the last years with increasing frequency for the
construction of several canopies, roofs, covers and even
bridges (like the Kurilpa Bridge in Brisbrane, Australia).
Even though some of them could not be considered as
pure tensegrity structures, there is a rising sensibility to
their application with engineering and architectural
purposes. It is remarkable that researches on Tensegrity
have not decreased. In fact, for all the publications about
Tensegrity since the 70s, 83% of them have been
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published during the last decade (according to the
databases of Scopus and Web of Knowledge).

1.1. Organization of the paper
Firstly, relevant precedents on DLTGs over the last few
years, concerned with this work, will be presented
briefly as an introduction to the topic. Then, the basic
two methodologies used at the moment for the
generation of DLTGs will be exposed, based on
composition and decomposition techniques. After that,
a new approach will be proposed, parting from
conventional double-layer grids (DLGs) and applying
to them a new kind of operation, denominated Rot-
Umbela manipulation. It will be explained that some of
the current tensegrity grids could be obtained by Rot-
Umbela manipulations. Finally, some notes about other
future proposals, analysis and conclusions are
presented as part of a research with larger implications.

1.2. Relevant precedents on DLTGs
Since the controversial discovery of Tensegrity [2] in
the 1940s–50s, many configurations of tensegrity
grids have been proposed, starting with the works of
their discoverers: Fuller, Snelson and Emmerich. In
the 70s, Pugh [3] proposed some tensegrity nets,
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although it was not until the next decade when Hanaor
[4] and Motro [5] took a more structural and
mechanical approach and studied the form-finding,
resistance and stability of some DLTGs. The former
experienced basically with the juxtaposition of
tensegrity prisms, avoiding contacts between struts;
meanwhile, the latter studied the same tensegrity
pyramids (mainly the same half-cuboctahedrons
showed by Emmerich [6] in his first patent) but for
planar grids, by means of joining the ends of some
struts. Emmerich [7] also published a complete book,
where a chapter was dedicated exclusively to “self-
stressed planar nets” from a geometrical point of view.

Following their steps, some other studies were
undertaken. Since 1996, Wang B.B., one of the most
prolific authors, analyzed thoroughly the combinations
of modules to generate several types of DLTGs,
depending on many different factors [8].

At the same time, Kono et al. [9] experimented with
a single kind of tensegrity grid, based on the use of
tripods or truncated pyramids of 3 bars each, somehow
similar to design #4 of Emmerich’s patent [6]
(although with some vertex-to-vertex connections)
(Fig 1.a) and Snelson’s abandoned patent [10] (Fig 1.b).

Working on the same line, the Mechanics and Civil
Engineering Laboratory (LMGC) of Montpellier
University, leaded by Motro, has been hosting,
directing and supervising since 1997 some other
students working on the same field of planar tensegrity
grids, focused on different aspects, like form-finding
methods, self-stress states, deployable configurations,
construction and active control techniques, optimal
dimensioning, etc. In any case, all of them were
mainly applied to just two classes of DLTGs: one built
with a 2 way grid structure (Fig 2.b), similar to one of
Snelson’s planar pices from the 60s (Fig 2.a) and
another one made of auto-stable half-cuboctahedron
modules (Fig 2c).

Among all those researches, one of the most
relevant essays about DLTGs was written by
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Figure 1. Double-layer tensegrity grids based on tensegrity
tripods by (a) Emmerich; (b) Snelson; (c) Kono et al.

(a)

(b)

(c)

Figure 2. (a) Snelson’s 2-way planar piece (1960). (b) 2-way
DLTG. (c) Half-cuboctahedron DLTG.
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Raducanu [11] as a part of his PhD thesis in 2001 and
the main subject of the Tensarch project. His
methodology, original and systematic, was based on
the use of inter-depending expanders rather than auto-
stable modules, applying topological and geometrical
relationships between them. This innovative technique
leaded to a break-through, obtaining new forms never
found before, materialized on 15 new grids and a new
line of research for future studies.

2. METHODOLOGIES FOR DESIGNING
DLTGs
Among all the experiences and studies enumerated on
precedent section, two different methods for solving
the configuration of DLTGs have generally been
applied, and will be summarize in next lines:

2.1. Composition
(Creation of grids by means of attaching different
tensegrity modules one to each other). These basic cells
have been mainly n-fold rotational symmetry prisms
and truncated pyramids, constituted by n bars (usually
3 or 4) around a vertical axe. As already exposed,
Emmerich [7] proposed many other types that have not
been considered thoroughly during the last years.
Depending on the type of connection between the
modules, they can be classified as follows:

2.1.1. Non-Contiguous struts
Every compressed member is isolated from each other,
being connected just by means of members in tension.
There are different possibilities:

2.1.1.1. Vertex-to-edge connection
2.1.1.1.1. Unilaterally: (Fig 3.a) Two vertices of both
layers (base and top) of a module contact two edges of
another one (base and top). Type Ia [4] or A [12].
2.1.1.1.2. Bilaterally: (Fig 3.b) A module contacts
with a vertex the edge of another module on one layer
(e.g. top) while at the same time is contacted on its
edge of the other layer (e.g. bottom) with the vertex of
the other module. Type Ib [4] or B [12].

2.1.1.2. Edge-to-edge connection: 
(Fig 3.c) Adjacent modules share a portion of their
edges on both layers (top and bottom). Type II [4].

2.1.2. Contiguous struts: 
(Fig 3.d) Compressed members of one module touch
the extremity of other struts of adjacent modules. It
could be said that they cannot be classified as pure
tensegrity systems due to compressed elements are not
discontinuous; nevertheless, Motro [13] claims that
they could be considered as a continuum of cables

comprising some compressed components not
touching each other, being each component achieved
with a set of several bars.

They are class k tensegrity structures if at most “k”
compressive members are connected to any node [14].
For example, a non-contiguous strut DLTG is a class
k = 1 structure because only one compression member
makes a node. Analogously, structures with contiguous
struts would be k > 1.

Attending some other parameters, DLTGs could
also be categorized as follows:
– Flexible / Rigid, depending on the number of

mechanisms of the modules [8].
– Planar / Domical, depending on the curvature of

the grid [5].
– Central / Oblique, depending on the angle

between axes and bases of the modules.

2.2. Decomposition
(Creation of grids without self-stable subsystems
joined together, but by means of the integration of
bracing members (expanders), composed by
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(a) (b)

(c) (d)

Figure 3. Composition by juxtaposition of tensegriy Simplex:
(a) Non-Contiguous V-to-E Unilateral. (b) Non-Contiguous 

V-to-E Bilateral. (c) Non-Contiguous E-to-E. (d) Contiguous.



compressed struts and tensioned cables, between the
top and bottom chords of the grid, obtains a whole
structure in equilibrium).

This original approach by Raducanu [11], proposed
the use of three different types of expanders depending
on their shape: V, Y and Z. The first group was usually
denominated Vmn, being m the number of bars
meeting at the lower node and n the same at the upper
node. For instance, the expander used in the grid of
Fig 2.b is a V22. The Y-expanders don’t really
generate double-layer structures, but triple-layer grids,
because they include additional nodes between the top
and bottom layers. Finally, the Z group, or Zn
expander, is formed by closed chains of n contiguous
struts going zigzag between the upper and lower layer
of the DLTG. See Fig 4 for some more examples.

3. NEW APPROACH TO DLTGs FROM
DLGs
In this paper, a new approach is presented, mainly in
geometrical terms because it gives information about
the general procedure before contrasting the final
geometrics with the self-stress states of the proper
form-finding.

Conventional DLGs are usually a composition of
regular tessellations (triangles, squares and hexagons
filling the space) for either the top, bottom or bracing

members. The composition and representation of
DLGs comes from the integration of the three of them;
however, Otero [15], [16] proposed their geometrical
definition by means of just the mosaic of the bracing
members, along with two other factors: the location on
the mosaic of the nodes on the bottom and top chords,
and the rules of relation for joining them. As a result,
new DLGs were defined from different bracing
members’ tessellations: not only from regular tilings
(made with a single type of regular polygon and
congruent vertices), but also from semiregular
(different types of regular polygons and congruent
vertices), demiregular (different types of regular
polygons and non-congruent vertices), equifacial
(dual of semiregular) and semiequifacial (dual of
demiregular) mosaics.

Another research, by Gómez-Jáuregui et al. [17],
has been carried out on the countless possibilities and
collateral investigations related to that methodology.
Although it is not the main aim of the current paper,
we will refer to it when defining the nomenclature of
the DLGs.

Let’s take, for instance, the tessellation 4,6,12 of
Fig 5.a, composed by squares, hexagons and
dodecagons This tiling will be considered as the
intermediate layer, so the different lines represent the
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(a)

(b)

(c)

Figure 4. (a) V33 expander. (b) V44 expander. (c) Z6
expander, after Raducanu [11].

(a) Bracing
member

Bottom
vertex

4,6,12-Ba-Ta 4,6,12-Ba1-Ta1

Top
vertex

(c)

(b)

Figure 5. Generation of DLG 4,6,12-Ba1-Ta1 from semi-
regular tessellation 4,6,12. (a) Distribution of top and
bottom vertices on the mosaic of bracing members. 

(b) Connection of upper and lower nodes creating top and
bottom layers respectively. (c) Perspective of the final

configuration of the DLG.
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bracing members of the DLG. Then, let’s consider
that the location of the nodes in both layers (denoted
with B for Bottom layer and T for Top layer in 4,6,12-
B-T) is alternate (denoted with an a in 4,6,12-Ba-Ta),
so the vertices belong or not, alternately, to that
particular layer, as it is represented on Fig 5.a (Top
vertices as dark circles, Bottom vertices as light
squares). Note that this option is possible because
every polygon has an even number of sides.
Consequently, another rule needs to be followed to
join the vertices of each chord; in this case, it will be
the easiest and most evident, i.e. connecting to the
closest nodes of each polygon (denoted with the
number 1 after the a in 4,6,12-Ba1-Ta1), obtaining the
Fig 5.b. The final result is shown in of Fig 5.c in a
perspective view.

Henceforth, different methodologies of geometrical
configurations can be undertaken: Rot-Umbela
manipulation, composition from Emmerich modules,
intuitive configuration, truncation and decomposition
of nodes, selective consideration of diagonal and
vertical members, etc. Special attention is paid to
definition of edges and corners, in order to assure the
correct stability of the assembly and the transmission
of loads to the supporting system.

3.1. Umbela Manipulation
Applied to polyhedra, conventional Umbela
manipulation was originally defined as an operation
that consists on opening a given direction in the space
in such a way that we can obtain a regular polygon
with its vertices placed in a plane perpendicular to the
chosen direction (Gancedo, [18]). This operation is
defined by means of different parameters (Fig 6): a
number of new vertices in each direction (p), a
semiangle of the regular cone whose vertex is the
origin of the tryhedron having a base formed by the
new vertices (α) and the orientation of the regular
polygons when opening the new vertices (ai = bi = …
= fi). Umbela manipulation permits different polyhedra
to be generated from an initial polyhedron, depending
on the number of new vertices and the direction of the
opening. As is shown in Fig 7, from an octahedron,
depending on those parameters, it is possible to obtain
a tetrahedron (p = 2, α = 54, 736°, ai = bi = … = fi =
45°), an hexahedron (p = 4, α = 54,736°, ai = bi = … =
fi = 45°) or an icosahedron (p = 2, α = 31,717°, ai = bi

= … = fi = 0°).

3.2. Rot-Umbela Manipulation
In the case of a grid or tessellation, we will define Rot-
Umbela manipulation as a particular Umbela
manipulation in which the direction of the opening

(with a certain amplitude a) is always on the plane of
the net and new polygons could also result irregular
and rotated (with an angle of rotation r). See Fig 8.
Final shape and rotation would be defined by the initial
conditions imposed to geometry and pre-stressed state
applied to the structure. In some ways, this shape on the
vertices of a spatial structure could resemble the ‘fans’
or ‘reciprocal frames’ characteristics of the nexorades
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From V2p + 1to V3p

From Vp + 1to V2p
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Figure 6. Concept and main parameters of Umbela
manipulation (by Gancedo [18]).

Figure 7. Obtaining a tetrahedron, hexahedron and
icosahedron from an octahedron through Umbela

manipulation (by Gancedo [18]).



or reciprocal structures [19], but obviously without
contact between the struts.

For any vertex of valence v, a new polygon of u
sides could be generated around it, saying that it has an
umbela valence u. A vertex has a natural umbela
valence if vertex valence (v) and umbela valence (u)
coincide (u = v). This is the case in Fig 8 (u = v = 6)
and vertex A and B of semi-regular tessellation 3,4,6 in
Fig 9 (u = v = 4). An example of the opposite case is
vertex C of the same figure (v = 4, u = 3).

When talking about DLGs, Rot-Umbela
manipulations can be applied to just one of the two
layers or both, as well as to all the vertices of the grid
or just some ones. Results are countless depending on
the complexity of the DLG, and variety of new DLTGs
is also remarkable.

For another example, from the DLG generated in
Fig 5, let’s apply a Rot-Umbela manipulation with
natural umbela valence (u = v = 3) and initial rotation
r = 150°. The sequence is exposed in Fig 10, where one
of the tripods has been remarked for clearer
visualization. Fig 10.a is the original configuration of
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Figure 8. Main parameters and sequence for the Rot-Umbela
manipulation. (a) Original configuration of the DLG. 

(b) Opening (a) of the original upper vertex and generation
of six new vertices. (c) Rotation (r) of the new vertices
around the original vertex. (d) Reorganization of the top

cables to avoid interferences.

(a) (b) (c)

a

a

a a

15
0°

15
0°

150°

15
0°

15
0°

Figure 9. Rot-Umbela manipulation on semi-regular tessellation (3,4,6) with natural umbela valence (u = v = 4) in vertices A and
B, but different umbela valence (u = 3, v = 4) in vertex C.

Figure 10. Detail in a sequence of Rot-Umbela on vertices of DLG 4,6,12-Ba1-Ta1.(a) Original DLG. (b) Opening of the vertex
and creation of new vertices (c) Rotation of the new vertices around the original node.
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the DLG. In Fig 10.b the opening (a) is executed in
every vertex of the grid with natural umbela valence.
In this case, a is 20% of the length of the horizontal
projection of the struts. Finally, Fig 10.c shows the
configuration of the DLTG after the application of the
rotation (r = 150°)

As can be observed in Fig 11.a, this manipulation
generates irregular polygons (triangles with three
different angles). If applied only on the bottom layer,
the tensegrity grid of Fig 11.b would be obtained. Note
that compressed elements are sets of tripods (class k = 3)
not touching each other.

If a similar Rot-Umbela manipulation is applied
also to top layer, a different DLTG would be attained

(Fig 11.c), a non-contiguous configuration (class k = 1),
composed of T-tripods similar to those used in grids of
Fig 1.

It is remarkable that some configurations of DLTGs
already known respond to the final result of a Rot-
Umbela manipulation. It is possible to apply it to DLG
of Le Ricolais, easily obtained after Otero’s rules from
the regular mosaic 63, as illustrated in Fig 12.a and b,
which nomenclature would be 63-Ba1-Ta1. From this
grid, the hexagonal DLTG made of tripods of Fig 1 can
be generated applying the following parameters:
– Natural umbela valence: u = v = n = 3 on upper

and bottom layer, n being the number of struts
concurring at each vertex (Fig 12.c).

International Journal of Space Structures Vol. 27 No. 2&3 2012 161

(a) (b) (c)

Figure 11. DLTG from 4,6,12-Ba1-Ta1: (a) Rot-Umbela manipulation (u = v = 3), plan view (showing just the struts). (b) Rot-
Umbela only on the lower layer, perspective. (c) Perspective of a Rot-Umbela on both layers.

14
3°

30°

143°

(a) (b) (c)

(d)

Figure 12. Obtaining Kono et al.’s DLTG from DLG 63-Ba1-Ta1 (Le Ricolais) with Rot-Umbela manipulation.



– Amplitude (a) of the opening is not crucial in this
case and can be optional.

– Rotation: r = 143° (Fig 12.d).
Another example corresponds to Fig 13, which is

the application of Rot-Umbela manipulations on DLG
(44)45-Ba1-Ta1 (Space Deck or square-on-square grid)
of Fig 13.a-b, with the following parameters:
– Natural umbela valence: u = v = n = 4 on upper

layer, n being the number of struts concurring at
each vertex.

– Amplitude of the opening: a = L • cos (π / n) =
L • �2 /2, L being the length of the horizontal
projection of the struts (Fig 13.c).

– Rotation: r = 90° + 180° / n = 135° (Fig 13.d-e).
As can be observed in Fig 13.a and b, originally

four struts are meeting at each upper vertex. In Fig
13.c, the opening of those vertices is applied with
valence v = 4 so, for instance, vertex 1 becomes

vertices 1a, 1b, 1c and 1d. The next two images show
the rotation of these new nodes in two phases: Fig 13.d
and e present a rotation of 90° and 135° respectively.
Final configuration (Fig 13.f) corresponds to the
DLTGs composed of half-cuboctahedrons already
shown in Fig 2.c.

As already mentioned, final geometry of the DLGs
is usually achieved by means of a rotation of the
polygons opened around the vertices. It is widely
known that in tensegrity prisms or pyramids, there is
always a twist angle α between both bases, depending
on the number of sides or struts of the system (n),
following the well-known formula α = 90°–180°/n. In
Rot-Umbela manipulations there is a twist angle as
well. In any case, as in tensegrity structures, it is
possible to correct that rotation by means of changing
the configuration and/or number of the tendons of the
structure or its initial state of self-stress.
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Figure 13. Obtaining DLTG of half-cuboctahedrons from DLG (44)45-Ba1-Ta1 (Space Deck or s-on-s grid) with 
Rot-Umbela manipulation.
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3.3. Analysis of the grids
In order to achieve the correct and stable configuration
of the DLTGs proposed in precedent sections, it is
essential to prove its stability and equilibrium by
means of a study of the structure. Special attention has
to be paid to edges of the grid and boundary
conditions, because their configuration is critical for
providing the stability and equilibrium to the whole
system.

Analysis of the structures has been done with three
different approaches in order to compare results: firstly,
a numerical method for calculating the number of
mechanisms and states of self-stress by consecutively
solving two homogenous linear systems, strongly
inspired on the studies on the subject [20] and the
numerical methods developed by Tran and Lee [21];
then, a real time implementation of a discrete element
method with mass-spring systems [22]; and finally, a
modified dynamic relaxation algorithm applied to
clustered tensegrity structures [23].

Structural behavior of the grids used as examples in
this paper will be exposed in further communications
(e.g. deflections, reactions, response to external loads,
etc.). However, it is noteworthy the fact that
differences between the grid by Kono et al. (Fig 14.b)

and DLTG obtained by Rot-Umbela manipulation on
DLG 4,6,12-Ba1-Ta1 (Fig 14.a) are not significant in
terms of internal mechanisms and states of self-stress.
While the first grid has m = 18 infinitesimal internal
mechanisms with 10 tensegrity tripods, the second one
has almost the same number of mechanisms (m = 19)
with nearly the double of tensegrity tripods (18).
Analysis of unilateral mechanisms was done according
to Maurin et al. [92], but not one was found in any of
the grids. In addition, both of them have only one
feasible state of self-stress.

DLTG obtained from Rot-Umbela manipulation on
4,6,12-Ba1-Ta1 leads to a structure composed by 108
nodes (54 in each layer) and 300 elements (54 bracing
struts, 96 lower cables, 96 upper cables and 42 bracing
wires), as can be observed in Fig 15. Moreover, some
distinctions have been made between some elements
of each layer: triangular wires respond to the short
tendons that form small triangles in each layer; inner
upper wires are those of the internal dodecagon of the
top layer; outer upper wires are those of the external
dodecagon of the top layer.

From this distribution and with the geometry shown
in Fig 15, a form-finding analysis was carried out in
order to obtain a feasible state of self-stress and the
final location of the nodes. Using the three calculation
methodologies exposed above, it was possible to solve
this questions. Firstly, it was obtained the Equilibrium
Matrix and, after applying an iterative method, the
kernel or null space of the matrix was obtained. Being
a one-dimensional space, that was the only feasible
state of self-stress. Then, with the dynamic relaxation
algorithm, modified coordinates (with very small
variations compared to the original position of the
nodes) and internal forces (shown in Fig 16) were
obtained.

It can be observed that the solution is compatible
with the rigidity of struts, i.e. in compression (first
group of elements with negative values) and with the
cables, i.e. only tension (rest of the members, all with
non-negative values). Thus, the mechanical validity of
the obtained configuration is proved.

In the particular case of this flat DLTG, values of
some tensions at inner and outer members (elements
151 to 191 of Fig 16) are very low compared to
tensions in other elements of the grid. However, they
are important in order to minimize the number of
internal mechanisms. For example, without those 12
extra inner and outer upper wires, the internal
mechanisms (m) would be 30 instead of 18. Besides,
there could be some other occasions (domical
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(a)

(b)

Figure 14. (a) Rot-Umbela manipulation on 4,6,12-Ba1-Ta1. 
(b) Rot-Umbela manipulation on 63-Ba1-Ta1.



configurations or external loading cases) where those
elements could have higher values. Nonetheless, this
situation of having very small tensions on some
members of the grid is common to some other DLTGs.
For example, the one by Kono et al. (Fig 14.b), whose
internal forces are presented in Fig 17, where elements
101 to 116 and 121 to 126 are barely in tension in
comparison with the other cables of the grid.

The other case exposed on this paper, DLTG
composed of half-cuboctahedrons (Fig 13.d), is very
different due to the fact that it is not class k = 1 and,
thus, as bars are in contact, it is much more rigid.
Some other authors have already studied this grid in
depth [5], [21], [24], whose results coincide with the
one obtained here (several states of self-stress and just
one internal mechanism m = 1).

164 International Journal of Space Structures Vol. 27 No. 2&3 2012

Novel Technique for Obtaining Double-Layer Tensegrity Grids

Upper_lyr_triang_2

Upper_lyr_inner

Upper_lyr

_Web_strut_layer

Web_wire_lyr

Lower_lyr_triang

Lower_lyr

Upper_lyr_triang_1
Upper_lyr_outer

Figure 15. DLTG obtained from Rot-Umbela manipulation on 4,6,12-Ba1-Ta1.
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Figure 16. Internal forces of the different elements of the DLTG obtained from Rot-Umbela on 4,6,12-Ba1-Ta1.
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4. FUTURE RESEARCH
Analytical comparison between conventional and
tensegrity double-layer grids are also being established
depending on different factors: weight, resistance,
deformation, clearance, economy of materials, etc.
Obviously, important advantages and disadvantages
are argued depending on the application of the final
mesh. Thus, some conclusions about the possible
application of the new DLTGs are being arisen and
will also be presented in the future.

5. CONCLUSIONS
Even though for the last years there have been several
proposals for designing DLTGs, most of them have been
obtained with a methodology based on composition,
attaching tensegrity modules one to each other. As
shown by Raducanu, there are other possibilities with
interesting geometry and applications. A new approach
is shown in this work, parting from tessellations that
originate conventional DLGs, which lower and/or upper
layers are modified with Rot-Umbela manipulations.
From this point, a new catalogue of possibilities is open
for creating new arrangements of DLTGs.
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