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Summary 

Double-layer tensegrity grids (DLTGs) may be defined as tensegrity spatial systems containing two parallel 

networks of members in tension forming the top and bottom chords, whose nodes are linked by vertical and/or 

inclined web members in compression (although some of them could also be in tension). 

As an introduction, it is presented a brief perspective of the historical proposals for DLTGs over the last 50 

years, including an extended bibliography with the most important contributions of different authors concerning 

tensegrity planar pieces. 

In this paper, a new approach is described, mainly in geometrical terms, taking conventional double-layer grids 

(DLGs) as the starting point of the research. They are composed of three layers: top, bottom and inner chords 

(usually regular tessellations); however, Otero proposed a new methodology for their composition from the mosaic 

of the diagonal web and additional laws. Following this scheme, this paper shows new rules for generating original 

DLG defined not only from regular, but also from semiregular, demiregular, equifacial (dual of semiregular) and 

semiequifacial (dual of demiregular) mosaics. From them, a new technique, known as Rot-umbela Manipulation, is 

applied to any of those DLGs to obtain their tensegrity form, opening and endless catalogue of DLTGs. 
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1. Introduction 

Tensegrity is a principle based on self-stressed and auto-stable structures composed by isolated components 

in compression inside a net of continuous tension, in such a way that the compressed members (usually bars 

or struts) do not touch each other and the pre-stressed tensioned members (usually wires or even tensile 

membranes) delineate the system spatially [1]. Based on this concept, double-layer tensegrity grids (DLTGs) 

are defined as tensegrity spatial systems containing two parallel networks of members in tension (top and 

bottom chords), whose nodes are linked by vertical and/or inclined web members in compression and tension. 

These kinds of structures are being taken into account in the last years with increasing frequency for the 

construction of several roofs, covers and even bridges (like the Kurilpa Bridge in Brisbrane, Australia). Even 

though some of them could not be considered as pure tensegrity structures, there is a rising sensibility to their 

application with engineering and architectural purposes. 

In this work, the origins, evolution and new trends on DLTGs over the last few years will be presented. It will be 

back up whit continuous references to an extended bibliography included at the end of the paper, gathering the 

most important contributions of different authors concerning tensegrity planar pieces. Then, the basic two 

methodologies used at the moment for the generation of DLTGs will be exposed, based on composition and 

decomposition techniques. After that, a new approach will be proposed, parting from conventional DLGs and 

applying to them a new kind of operation, denominated rot-umbela manipulation. It will be explained that some 

of the current tensegrity grids could be obtained by rot-umbela manipulations. Finally, some notes about other 

future proposals, analysis and conclusions are presented as part of a research with larger implications. 
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2. Historical Background 

Since the controversial discovery of Tensegrity [2] in the 1940s-50s, many configurations of tensegrity grids 

have been proposed. In the early years, mainly Fuller [3], Snelson [4] and Emmerich [5],[6] started to design 

and create models of several tensegrity planar pieces, utterly different from the more typical spherical or 

prismatic tensegrity systems. Some of them [7],[8] were not shown publicly until recent years, even though they 

could be of interest for study and analysis. In the 70s, mainly Pugh [9] and Vilnay [10] proposed some other 

tensegrity nets, although it was not until the next decade when Hanaor [11-17] and Motro [18-23] took a more 

structural and mechanical approach and studied the form-finding, resistance and stability of the double-layer 

tensegrity grids (DLTG), where the bars are confined between two parallel layers of cables. The former 

experienced basically with the juxtaposition of tensegrity prisms (for planar pieces) and truncated pyramids (for 

domical configurations), avoiding contacts between struts like Emmerich did; meanwhile the latter studied the 

same tensegrity pyramids (mainly the same half cuboctahedrons showed by Emmerich [5] in his first patent) but 

for planar grids, by means of joining the ends of some struts. Besides, Nestorovic [24],[25] also developed 

some proposals for integrally tensioned domes made of tensile double-flanged network. 

Analogously, Emmerich [26-28] published a complete and resourceful compendium of the theories, structures, 

models and projects carried out by himself and his students. One of the sections of that book was dedicated 

exclusively to "self-stressed planar nets", although in a very restrictive manner, taking into consideration just 

some of the possible kinds of DLTGs. There, he enumerated many configurations based on prismatic, anti-

prismatic, anti-pyramidal, interlaced and inter-penetrated tensegrity modules creating several and variable 

tessellations. 

Following their steps, at the end of the last century, some other studies were undertaken; although not very 

different to the pre-existing configurations, they have made an important contribution to the different manners of 

analyzing these kinds of structures. One of the most prolific authors, Wang B.B. [29-37] has been since 1996 

analyzing thoroughly the combinations of modules to generate several types of DLTGs, depending on the kind 

of simplex to use, the connection between them,  the contiguity of the struts, the rigidity of the systems, the 

location of the supports, etc. In other words, he continued Emmerich's task from a more structural rather than 

architectural approach. 

Hilyard and Lalvani [38] called attention to some basic grids based on the filling of several tessellations with 

space cells, which they called Emmerich-type structures, constructed from prismatic tensegrity modules. 

Figure 1. Double-layer tensegrity grids by Emmerich (a), Snelson (b) and Kono&Kunieda (c) based on 
tensegrity tripods. 
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At the same time, Kono and Kunieda [39-44] experimented with a single kind of tensegrity grid, based on the 

use of tripods or truncated pyramids of 3 bars each, somehow similar to design #4 of Emmerich's patent [5] 

(although with some vertex-to-vertex connections) (Figure 1.a) and Snelson's abandoned patent [7] (Figure 

1.b). Different geometries were tested, depending on the attachments of the wires of the bigger base (direct to 

the edges of the struts, to the GC of the base or to some intermediate points of the bisectrices of the base). A 

big-scale model composed by 33 triangular modules, with an 80m2 covered area, was constructed at the end of 

the experiment, including for their assembly a newly proposed member joint system. Finally, the study ended 

with the grant of a patent [44] which also included configurations of 4 strut modules and domical 

representations of that specific DLTG.  

Working on the same line, the Mechanics and Civil Engineering Laboratory (LMGC) of Montpellier University, 

leaded by Motro, has been hosting, directing and supervising since 1997 some other students working on the 

same field of planar tensegrity grids: Quirant [45-47], Smaili [48-51], Sánchez [52-54], Bouderbala [55], Vassart 

[56], Averseng [57-60], Djouadi [61-63], Kebiche [64], Le Saux [65], etc. Their essays were focused on different 

aspects, like form-finding methods, self-stress states, deployable configurations, construction and active control 

techniques, optimal dimensioning, etc. In any case, all of them were mainly applied to just two classes of 

DLTGs: one built with a 2 way grid structure (Figure 2.b), similar to one of Snelson's planar pices from the 60s 

(Figure 2.a) and another one made of auto-stable half-cuboctahedron modules (Figure 2c). 

 

Figure 2. a) Snelson's 2-way planar piece (1960).  b) 2-way DLTG.  c) Half-cuboctahedron DLTG  

 

Among all those researches, one of the most relevant essays about DLTG was written by Raducanu [66] as a 

part of his PhD thesis in 2001 and the main subject of the Tensarch project. After briefly exposing the main 

concepts and characteristics of tensegrity systems, and resuming precedent similar works dealing with DLTGs, 

he explained his own approach to find new configurations. The methodology, original and systematic, was 

based on the use of inter-depending expanders rather than auto-stable modules, applying topological and 

geometrical relationships between them. This innovative technique leaded to a break-through, obtaining new 

forms never found before, materialized on 15 new grids and a new line of research for future studies. This 

theoretical effort was carried out by different means and integrating powerful tools like Formian, Autocad, 

Matlab, Abaqus, etc. It was finally applied to the construction of a big-scale prototype, in order to find a feasible 

way of incorporating tensegrity structures into new architecture. As a result, Raducanu and Motro [67] filled that 

same year an application for a patent exposing the outcomes of the research. 

There have been some other interesting proposals, like Passera and Pedretti's [68] project for Swiss Expo 2001 

or grid shells designed by Addriansens and Barnes [69]; however they will not been taken into account for not 

being proper DLTGs but compositions of octahedral cells like originally exposed Pugh [9]. 

In any case, it is remarkable that researches on conventional DLTGs have not decreased, and recently some 
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authors have been undertaking studies on this kind of structures. It is the case of Panigrahi, Gupta and Bhalla 

[70], [71], constructing and testing a dismountable tensegrity grid for possible deployment as light-weight roof 

structures; or Tran and Lee [72-74], dealing with the form-finding and initial self-stress of tensegrity grids 

(essentially the same ones studied in the LMGC of Montpellier). 

 

3. Methodologies for designing DLTG 

Among all the experiences and studies enumerated on precedent section, two different methods for solving the 

configuration of DLTG have generally been applied, and will be summarize in next lines: 

 

3.1. Composition 

 

(Creation of grids by means of attaching different tensegrity modules one to each other). These basic cells 

have been mainly n-fold rotational symmetry prisms and truncated pyramids, constituted by n bars (usually 3 

or 4) around a vertical axe. As already exposed, Emmerich [26] proposed many other types that have not been 

considered thoroughly during the last years. Depending on the type of connection between the modules, they 

can be classified as follows: 

3.1.1. Non-Contiguous struts: Every compressed member is isolated from each other, being connected just 

by means members in tension. There are different possibilities: 

3.1.1.1. Vertex-to-edge connection:  

3.1.1.1.1. Unilaterally: two vertices of both layers (base and top) of a module contact 

two edges of another one (base and top). Type Ia or A [11], [75]. 

3.1.1.1.2. Bilaterally: a module contacts with a vertex the edge of another module on 

one layer (e.g. top) while is contacted on its edge of the other layer (e.g. bottom) 

with the vertex of the other module. Type Ib or B [11], [75]. 

3.1.1.2. Edge-to-edge connection: adjacent modules share a portion of their edges on both 

layers (top and bottom). Type II after Hanaor [11]. 

3.1.2. Contiguous struts: Compressed members of one module touch other struts of adjacent modules. It 

could be said that they cannot be classified as pure tensegrity systems due to compressed elements 

are not discontinuous; nevertheless, Motro [21] claims that they could be considered as a continuum of 

cables comprising some compressed components not touching each other, being each component 

achieved with a set of bars. 

They are class k tensegrity structures if at most “k” compressive members are connected to any node 

[76]. For example, a non-contiguous strut DLTG is a class 1 structure because only one compression 

member makes a node. 

 

Attending some other parameters, DLTGs could also be categorized as follows: 

- Flexible / Rigid, depending on the number of mechanisms of the modules [36]. 

- Planar / Domical, depending on the curvature of the grid [18]. 

- Central / Oblique, depending on the angle between axes and bases of the modules. 

 

3.2. Decomposition 

 

(Creation of grids without self-stable subsystems joined together, but by means of the integration of web 

members (expanders), composed by compressed struts and tensioned cables, between the top and bottom 



chords of the grid, obtaining a whole structure in equilibrium).  

This original approach by Raducanu [66], proposed the use of three different types of expanders depending on 

their shape: V, Y and Z. The first group was usually denominated Vmn, being m the number of bars meeting in 

the lower node and n the same in the upper node. For instance, the expander used in the grid of Figure 2.b is 

a V22. The Y-expanders don't really generate double-layer structures, but triple-layer grids, because they 

include additional nodes between the top and bottom layers. Finally, the Z group, or Zn expander, is formed by 

closed chains of n contiguous struts going zigzag between the upper and lower layer of the DLTG. See Figure 

3 for some more examples. 

 

Figure 3. a) V33 expander.  b) V44 expander.  c) Z6 expander, after Raducanu [66] 

 

4. New approach to DLTG from DLG 

In this paper, a new approach is presented, mainly in geometrical terms because it gives information about the 

general procedure before contrasting the final geometrics with the self-stress states of the proper form-finding. 

Conventional double-layer grids (DLG) are usually a composition of regular tessellations (triangles, squares and 

hexagons filling the space) for either the top, bottom or inner chords. The composition and representation of 

DLG comes from the integration of the three of them; however, Otero [77], [78] proposed their geometrical 

definition by means of just the mosaic of the diagonal web, along with two other factors: the location on the 

mosaic of the nodes on the bottom and top chords, and the rules of relation for joining them. As a result, new 

DLG were defined from different web members’ tessellations: not only from regular, but also from semiregular, 

demiregular, equifacial (dual of semiregular) and semiequifacial (dual of demiregular) mosaics.  

Another research on the countless possibilities and collateral investigations related to that methodology is also 

being carried on, but it is not the main aim of the current paper. 

 

Figure 4. Generation of DLG from semi-regular tessellation 4,6,12.  

 

Let's take, for instance, the tessellation 4,6,12 of Figure 4.a, composed by squares, hexagons and dodecagons 

a b c 
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It will be considered as the web layer, so the different lines represent the diagonals of the DLG. Then, let's 

consider that the location of the nodes is alternate, so if a vertex belongs to the top layer, its neighbors belong 

to the bottom layer and vice versa, as it is represented on Figure 4.a. Note that this option is possible because 

every polygon has an even number of sides. Consequently, another rule needs to be followed to join the 

vertices of each chord; in this case, it will be the easiest and most evident, i.e. connecting to the closest nodes 

of each polygon, obtaining the Figure 4.b. The final result would be the double-layer grid of Figure 4.c. 

 

Henceforth, different methodologies of geometrical configurations can be undertaken: Rot-umbela Manipulation, 

composition from Emmerich modules, intuitive configuration, truncation and decomposition of nodes, selective 

consideration of diagonal and vertical members, etc. Special attention is paid to definition of edges and corners, 

in order to assure the correct stability of the assembly and the transmission of loads to the supporting system. 

 

4.1. Rot-Umbela Manipulation 

 

Applied to polyhedra, Umbela Manipulation is defined as an operation that consists on opening a given direction 

in the space in such a way that we can obtain a regular polygon with its vertices placed in a plane perpendicular 

to the chosen direction (Gancedo, [79], [80]). In the case of a grid or tessellation, we will define Rot-Umbela 

Manipulation as a conventional Umbela Manipulation in which the direction of the opening is always on the 

plane of the net and new polygons could also result irregular and rotated (final shape and rotation would be 

defined by the initial conditions imposed to geometry and pre-stressed state applied to the structure). For any 

vertex of valence v, a new polygon of u sides could be generated around it, saying that it has an umbela 

valence u. If vertex valence and umbela valence are coincident (u=v), as seen in vertex A and B of demi-regular 

tessellation of  

Figure 5, it is said that the vertex has a natural umbela valence. An example of the opposite case is vertex C of 

the same figure (v=4, u=3) and another one is illustrated on Figure 6.a, where v=5 and u=3.  

 

Figure 5. Natural rot-umbela manipulation of demi-regular tessellation with vertex valence 4 and 5 (u=v) 

 

When talking about DLGs, rot-umbela manipulations can be applied to just one of the two layers or both, as well 

as to all the vertices of the grid or just some ones. Results are countless depending on the complexity of the 

DLG, and variety of new DLTGs is also remarkable. 

 

For another example, let's take the DLG generated in Figure 4, let's apply a rot-umbela manipulation (u=3) on 

the bottom layer (Figure 6.a) and we'll obtain the tensegrity grid of Figure 6.b. Note that compressed elements 

are sets of tripods (class k=3) not touching each other. 
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Figure 6. DLTG from 4,6,12: Rot-umbela manipulation (u=3) on lower chord. a) Bottom layer b) All layers c) 
Perspective. 

 

If rot-umbela manipulation is applied also to top layer, a different layer would be attained (Figure 6.c.), a non-

contiguous configuration (class k=1), composed of T-tripods similar to those used in grids of Figure 2. 

 

It is remarkable that some configurations of DLTGs already known respond as the final result of a rot-umbela 

manipulation. It is the case of the hexagonal grid made of tripods of Figure 1, which is exactly the configuration 

obtained after a natural rot-umbela manipulation on bottom and top layer of DLG of Le Ricolais. This grid is 

easily obtained after Otero's rules from the regular mosaic 63, as illustrated in Figure 7.a and b. 

 

Figure 7. Obtaining Kono&Kunieda's DLTG from DLG of Le Ricolais with Rot-umbela Manipulation 

 

As already mentioned, final geometry of the DLG is usually achieved by means of a rotation of the polygons 

opened around the vertices. It is widely known that in tensegrity prisms or pyramids, there is always a twist 

angle (a) between both bases, depending on the number of sides or struts of the system (n), following the 

formula  a = 90º - 180º / n. In rot-umbela manipulations there is a twist angle as well, proportional to different 

factors that, because of its complexity, are not explained in this paper. In any case, as in every tensegrity 

structure, it is possible to correct that rotation by means of attaching additional tendons to the structure. 

 

4.2. Other proposals 

 

In addition to the new technique already described, research on other different ways of generating new DLTGs 

is being carried on, and will be presented in next communications. Some of them come from the variation of 

conventional DLGs, like the rot-umbela manipulations, while others come directly from the combination of actual 

tessellations or already existing tensegrity grids. 
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4.3. Analysis of the grid 

 

In order to achieve the correct and stable configuration of the DLTGs proposed in precedent sections, it is 

essential to prove its stability and equilibrium by means of a study of the structure. Being this the case, a 

numerical process based on the force density method [81],[82] is considered for form-finding of the tensegrity 

grids. Literature with numerical examples is abundant, so we will avoid reiteration by keeping the extension of 

the present communication short. 

Special attention has to be paid to edges of the grid and boundary conditions, due to their configuration it is 

critical for providing the stability and equilibrium to the whole system. 

 

5. Future research 

Analytical comparison between conventional and tensegrity double-layer grids are also being established 

depending on different factors: weight, resistance, deformation, clearance, economy of materials, etc. 

Obviously, important advantages and disadvantages are argued depending on the application of the final mesh. 

Thus, some conclusions about the possible application of the new DLTG are being arisen and will also be 

presented in the future. 

 

6. Conclusions 

Even though for the last years there have been several proposals for designing DLTGs, most of them have 

been obtained with a methodology based on composition, attaching tensegrity modules one to each other. As 

shown by Raducanu, there are other possibilities with interesting geometry and applications. A new approach 

is shown in this work, parting from tessellations that originate conventional DLG, which lower and/or upper 

chords are modified with rot-umbela manipulations. From this point, a new catalogue of possibilities is open for 

creating new arrangements of DLTGs. 
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