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Abstract 
 
This paper describes some geometric concepts and their application in the geometric design of patched spatial 
structures to give designers a method which simplifies the whole process. 
Though this kind of composite surface can be fitted into more complex forms, patches, especially their 
boundaries, are sometimes difficult to define. This is the new approach offered by CAGD – Computer-Aided 
Geometric Design: patches defined by boundaries instead of surfaces defined in a domain. 
In the course of the article, some examples are examined from the designer's point of view, to show how CAGD 
solves the problem taking all the geometric restrictions into account. 
In addition, a CG (Computational  Geometry) technique exists which simplifies the three-dimensional problem of 
spatial structures and transforms it into a two-dimensional one, based on stereographic projection. This is an 
obvious  advantage the development team has introduced.  
This article gives a solution which condenses the three-dimensional problem inherent to spatial structures into a 
single plane in which the designer can define the whole structure: both the geometry of the shape of the spatial 
structure and the mesh comprised by its constituent struts.   
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 1   Introduction 
 
The design of a spatial structure begins with its geometric conception: what the structure's macroscopic shape 
is to be, the elements that are to comprise it, and how those elements are to be arranged. This work examines 
the geometry of space frames, spatial structures made up of linear elements or struts.  
Progress in computing has provided tools capable of dealing with complex three-dimensional surfaces which 
the user can select or define, so describing the structure's macroscopic shape. However, computer programs 
tend to locate struts in these surfaces according to their inherent mathematical rules, so separating the 
designer from this facet of the structure.  
This paper proposes a method for carrying out the whole geometric design of a structure from a single plane. 
Not only the macroscopic shape, but also the placement of the struts. To do this, techniques are required which 
can interrelate the plane with both parts of the structure. 
Instead of some other computational methods based on the optimization of the stress on the mesh (see, for 
example, Kamenski[1]), the procedure here shown is completely focused on computational geometric 
considerations. 
 



 
 
This contribution is organized as follows: 

 Introduction. Computer-Aided Geometric Design. NURBS surfaces. The WRD method. Section 1 
 Geometric definition of a bicubic patch. Surfaces of order n. Boundary properties and conditions. 

Section 2 
 The problem of continuity in patches. Types of continuity. Section 3 
 Transforming the plane into a three-dimensional surface. Section 4 
 The fit of a spatial structure in a patch. Monolayer and bilayer structures. Section 5 
 Definition of patch intersections. Section 6 

 
 1.1  Computer-Aided Geometric Design 
 
Computer Aided Geometric Design (CAGD) has accurate, efficient methods for graphic representation of 
objects. 
When this discipline came into being, its focus was on industrial design, but it quickly spread to many other 
fields and can be found in almost any computer modelling tool, including the conventional CAD programs (see 
Figure 1) used in the design of spatial structures (see Sánchez[2]) 
 

Figure 1. Mesh generated by CAGD techniques in a CAD program 
 
 1.2  NURBS 
 
CAGD has also developed quick assessment mathematical expressions for graphic representation of 
geometric elements. One of such elements is surface, among which this article is concerned with NURBS, 
Non Uniform Rational B-Splines, which are mathematically defined as follows (see Figure 2): 
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 Figure 2. NURBS defined by four control points 
 
Expression (1) is an algebraic sum of a set of coordinates for points Pi. These points generate a control 
polygon closely linked to the curve. This polygon is used to edit the curve graphically. In standard notation, n 
is taken as the order of the NURBS, using n+1 control points. Each point coordinate is increased by a real 



number wi, weight. The higher the weight of a point, the closer the curve will be to it. 
Finally, all the points are combined using special functions Bi, called blending functions. These functions are 
carefully chosen to give the curve special characteristics.    
If the numerator in (1) is taken, a curve called a B-spline is obtained. The denominator gives the curve special 
properties and will be studied in this article. The general expression for an nth-order NURBS surface is this: 
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This expression (2) is valid for quadrilateral NURBS elements, in which the Bij blending functions are tensorial 
products of the Bi in equation (1). As in the finite elements technique, there are several kinds of elements, 
which can be see in Farin [3]. For this article, triangular NURBS will be used, in which case the expression is 
slightly different: 
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Where Pij is the vector position of the control points, the wij parameters are the weights of each point and Bij is 
the blending functions. In the case of a triangular mesh, the necessary number of control points is 
(n+1)(n+2)/2. 
 
 1.3  WRD 

Weighted Radial Displacement is a method for NURBS transformation by projection of its control points. 
Sánchez-Reyes [4] describes how to transform planes and straight lines into quadrics and conics as second-
order NURBS. The most interesting idea in that paper is the real meaning given to the u and v parameters, 
relating a plane and a surface (or a straight line with a curve) by means of a simple projection. For this to be 
possible, the other parameters need to be chosen with a particular criterion.  
To introduce the concept, we shall describe the WRD method for conic curves, then show how the same idea 
applies in the case of surfaces.  
 
 1.4  Lines and Conics as NURBS 
 
A straight line can be defined as a sum of two-point coordinates, mixing the coordinates using linear functions. 
But there is a formula which, keeping the linearity of the u parameter, gives a quadratic expression of the 
straight line (see Figure 3): 
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This equation can be written like this: 
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Because the blending polynomials comply with B0+B1+B2=1. In formula (5), compared with expression (1), the 
wi weights are equal to 1. C1 is the mean point between C0 and C2. 
The linearity of the u parameter is essential. Although expression (4) is quadratic, also because of the special 
selection of C1, every differential increase in u makes the increase in the line length b(u) constant. So the 
following equality can be stated: 

        uC+uC=uC+uC+uC=b 20210u  112u1 22  (6) 

Which turns out to be the vectorial equation of a u-parameter straight line. 



Taking a point away from the straight line b(u) as the projection centres for its control points, a new curve is 
obtain. The WRD method explains how to change both its control points and their weights: 

New control points: Pi=
C i

λ i
, new weights: w' i =λ i wi  (7) 

Each position Pi lies on its respective straight line OCi. To simplify the formulae, projection point O is taken as 
the coordinate origin. The λi parameters are the projection factors of the control points. Following these steps, 
a simplified expression for the new curve is obtained: 
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The equation shows how each point on the straight line b(u) is transformed according to a projection factor λ(u), 
so defining a point-to-point relationship between the straight line b(u) and the curve N(u) (see Figure 3). The 
projection point could be at infinity. In that case, another expression is obtained: 
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Both equations (8) and (9) are conic. 

Figure 3. Conic as NURBS in WRD 
 
Although the relationship between conics and NURBS is described in detail in Farin[3] and in Hearn[5], and 
this formula is the most widely implemented in computing applications, the substantial improvement achieved 
by Sánchez-Reyes [4] is the materialization of the u parameter for the curves. Now u is the parameter of the 
vectorial equation of the straight line b(u) and is therefore linearly related with its length L(u) measured from 
point C0 in the direction C0-C2. 
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 2  N-order NURBS surfaces and bicubic patches 
 
In Sánchez-Reyes [4], only conics and quadrics are defined using WRD. But this method can be extended to 
obtain n-order surfaces. In the case of surfaces, biparametric geometric entities, they need to be related with 
a plane, in a similar way to how a curve was related with a straight line in  1.4 , following these steps: 
 

1. Selection of three vertex control points, C00, C0n, Cn0, and another projection point O. 
2. Other plane control points are needed, and are obtained with this expression: 

n
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3. The values for Pij and λij are obtained using the same expressions in (5) 
4. The NURBS is formulated like this: 
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Where b(u,v) is the expression of the plane defining the vertex control points. 
This formula is similar to equation (6).Conceptually, the same idea of projection of a point b, from a point O, 
using a factor λ. Figure 4 shows the geometric situation of the points and parameters defined in this formula 
for the case of n=3. 

 
Figure 4. Bicubic patch 

 
If O is at infinity, equation (12) becomes as follows: 
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Bicubic patches are for the case of n=3, so it is necessary to define (3+1)(3+2)/2 = 10 parameters Cij, Pij and 
λi. Bicubic patches are interesting because their outlines have independent tangency restrictions. This makes 
them very flexible to satisfy complex geometric conditions in a simple way. Mathematically, NURBS are 
bijective with a plane. This guarantees the biunivocal relationship between points on the plane and on the 
NURBS surface. 
 
 2.1  Boundary conditions and properties. 
 
There are some properties which are worth mentioning and taking into account. Some of them are illustrated 
in Figure 4, specifically adapted for n=3: 

1. NURBS surfaces touch control points P00, P03 and P30.  
2. The surface values along each side only depend on their related control points. For example, on the 

side P00-P03, only points P00-P01-P02-P03 are involved. 
3. The tangent plane at end P00 is given by points P00, P01 and P10, because only functions B00, B01, B10 

have non-null derivatives there. Similarly, the tangent plane at P03 is given by P03, P02 and P12, and at 
P30  by P30, P20 and P21. 

4. Each side is contained in a plane, because of the projection operation. These planes are defined by 
the vertex control points and point O. 

5. The triangular patch is limited by P00-P03-P30. For this, the value range [0,1] is used for parameters u 
and v, but the surface extends beyond the patch, using the full range of real numbers [-∞, ∞]. 

 
Because of all these properties, the boundary problems can be controlled directly from the projection plane.  
 
 3  Patch-continuity problems 
 
The possibility of joining two different patches make possible to put together composite surfaces for more 



complex geometric situations. The basic problem is joining two bicubic patches along one side. 
This work resolves two kinds of continuity problem. Type C0 problems are related with the value of the 
surface. Type C1 problems are related with the directions of planes tangential to the surface. 
 
 3.1  Continuity problem C0 

 

The first and second properties can be used to solve a type C0 problem directly. If two patches have to share 
a side, and the values the surface must have along that side need to be the same, the values for the Pij 
control points they share must be equal. If they share the side defined by C03 and C30: (see Figure 5) 

P03=P'03 P12=P'12  P21=P'21  P30=P'30    (15) 
For this to be valid, projection point O must be the same for both patches.  

 
Figure 5 

 
 3.2  Continuity problem C1 

 
If the patches are required to share not just the same values along the shared side but also the same 
tangency plane, this is a C1  problem. 
Assuming that the patches share side C03-C30, the tangent plane at point P03 , according to property 3, is given 
by P03, P02 and P12, for a patch. This plane must be the same as that defined by points P'03, P'02 and P'12 (see 
Figure 6.a) or, in other words, points  P03, P'02 and P12, because as described in 3.1, point P03 is equal to P'03 
and point P12 is equal to P'12. Calculating the intersection of line OC'02 with the plane P03-P02-P12 gives the 
position of P'02. The same method can be used for the other shared end,  C30. (see Figure 6.a). 
To get complete C1 continuity along the shared side, another restriction needs to be introduced. In this case, it 
is the position of point P'11. This point must be on the plane defined by P12, P21 and P11. As before, it is 
obtained by projection of C'11 on that plane (see Figure 6.b). 
Apart from the shared side, the other values for the second patch are completely free, and refer to the 
tangency value and plane at point C'00. 
When positions C'ij and P'ij have been found, the λij values are calculated according to (7). 
 
 
 
 
 
 
 
 
 

 
 

Figure 6. Solution of control point location 

 



 4  Transformation of the plane into a three-dimensional surface 
 
So far the expressions defining surfaces have been studied. The problem is that these expressions use u and 
v parameters corresponding to a particular coordinate system, the system of barycentric coordinates of the 
triangle C00-C03 -C30. 
Most engineering applications use the Cartesian coordinate system. It is needed to know how to change from 
one system to the other. If the vertex control points Cij have Cartesian coordinates (xij, yij, zij), and we want to 
transform point X of Cartesian coordinates (x, y, z), we apply the following method: 
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U=M− 1 X (17) 
The coordinate change described in (16) and (17) makes the u and v coordinates obtained correspond to the 
barycentric coordinates of the triangle C00, C03, C30. The h component obtained represents a third coordinate, 
out of the C00, C03, C30 plane, needed to represent three-dimensional space. The u base vector is the C03-C00 

vector and the v vector is C30-C00. The third base vector is the position vector of C00, which is out of the Q 
plane defined by  C00, C03, C30. 
(The standard use of barycentric coordinates of a triangle refers to three coordinates u, v, and w which are not 
linearly independent. Normally w is defined as w=1− u− v , and is contained in the plane made by C00, 
C03, C3. The h and w components refer to different concepts.) 
 
 4.1  The method step by step 
 
This section summarizes all the steps necessary to transform a point X (x,y,z) on a plane into a point of a 
NURBS, illustrated in Figure 7: 

1. Selection of a plane Q 
2. Selection of three points on the plane C00, C03, C30 .  
3. Selection of a point O out of the plane. In the case of a point at infinity, its coordinates need to be 

 zyx O,O,O=O (18) 

4. If O(xo, yo, zo) is finite, change the coordinate origin to O. This will affect all the points on the plane. 
Specifically, point X(x,y,z) will change to X (x-xo, y-yo , z-zo). 

5. Calculate the Cij positions using expression (11) 
6. Select the Pij positions, bearing in mind that it must be in the direction OCij. If O is at infinity, then 

Ok+C=P ijij   

7. Calculate the λij values with formula (7)  
8. Calculate the u and v parameters of X with (17) 
9. Use formula (12) or (14) as appropriate. Point X'(x',y',z') will be obtained 
10. Go back to the usual coordinate origin if necessary. X'(x'y'z') → X' (x'+xo, y'+yo , z'+zo)  

Figure 7. Projection of a point 



 5  Fitting a spatial structure into a patch 
 
From the designer's point of view, the most important idea in this article is that the whole spatial structure is 
defined in the plane C00-C03-C30. This idea is related with Otero[7] and Otero[8]. From this plane, it is possible 
to construct the structure's macroscopic geometry, its shape, which will be a NURBS surface. In the same 
plane, it is also possible to draw a mosaic, which will later form the struts of the space frame.  
 
 5.1  Single-layer structures 
 
Section  4.1  showed how to transform a point. Single-layer structures are made up of a set of linear elements, 
joined by knots at their ends. These are the nodes which need to be transformed. The workflow for an 
application is as follows: 

1. On plane Q, draw any mesh F, as a set of sides Ei. 
2. Define surface N (selecting the vertex control points and the projection point). 
3. For each side Ei 

 Transform its first end Ai into A'i 
 Transform its second end Bi into B'i  
 The solution will be segment Ei' : Ai'Bi' 

4. Repeat 
 
Note that only steps 1 and 2 need the intervention of the application user, the rest is automatic. Figure 8 
shows an example of execution of the above sequence of commands: 

 

 
Figure 8. Single-layer spatial structure 

 
 5.2  Double-layer structures 
 
Double-layer grids may be defined, Malla[6], as prefabricated systems consisting of two parallel networks of 
members forming the top and the bottom chords, which are interconnected by vertical and/or inclined web 
members. But according to Otero[7], this structure can be kept in a flat mosaic, which only shows the position 
of its diagonal struts. 
The next figure, Figure 9, shows a 4,8,8 mosaic: at each vertex, a square and two octagons meet. This 
mosaic can represent the system of diagonal struts. The figure shows the whole system made up of the upper 
and lower nodes, and a general view of the structure based on this mosaic. 



 
Figure 9. Mosaic and its associated flat double-layer spatial structure 

 
Otero[7] also explains how to determine which points are above and which below for any mosaic in a way 
which can be made automatic, simply by defining a distribution law and the position of one of them. So a set 
of points UL in the upper layer and a set LL in the lower layer can be obtained, each making an independent 
mesh. This article proposes to project each set onto a different surface. There are various ways to do this, but 
here only one will be formulated: defining a distance. 
If all the points UL and LL were projected onto the same surface, a single-layer structure would be obtained. 
In this case the set LL is to be separated by a distance, obtaining the desired result. This distance is to be 
measured along the direction of the projection, from O, and not in the normal direction to the surface, so the 
result will not be an equidistant surface.  
The position correction is like this: 

Finite case: 
 
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i

ii P

δP
P=P'


, Infinite case:  iiii O

δ
OP=P'  (18) 

 
Where δ is the distance required. Oi is the direction (Ox, Oy, Oz) of the projection point in the case of 
projection from infinity.   
If creation of an equidistant surface is required, this can be done by taking the normal direction to the surface, 
rather that the projection direction. Calculation of the normal unit vector n(u,v) is described in Farin[3]. In this 
case, expressions (18) become: 

 viui,ii δnP=P'  (19) 

The paper uses the expressions (18) in order to state the simplest solution for double-layer mesh structures. 
The workflow is as follows: 

1. In plane Q, draw a mosaic M as a set of sides Di, also  giving the position of one of the nodes 
2. Using plane Q, define a surface N 
3. Define distance δ to be put between the layers 
4. Create the set of points UL for the upper layer, generating a framework mesh of sides ULEi 
5. Create the set of points LL for the lower layer, generating a framework mesh of sides LLEi 
6. Transform set ULEi as a single-layered structure 
7. Transform set LLEi as a single-layered structure, correcting its position 
8. For every side Di 

 Transform its first end Ai into A'i. Si Ai is in set LL, correct the position A'i (18) 
 Transform its second end Bi into B'i. If Bi is in set LL, correct the position B'i (18) 
 The solution is segment Di' = Ai'Bi' 

9. Repeat 
Again, only the initial steps, 1, 2 and 3, require user intervention. The result is shown in Figure 10. 
 
 
 
 
 
 



Figure 10. Double-layer mesh and its associated mosaic (4,8,8) 
 

The idea of projecting the points onto a surface other than the one shaping the structure was used in Otero[8], 
where points of a particular mosaic are projected onto planes tangential to the surface rather than onto it to 
obtain panel structures.  

 
 6  Definition of patch intersections. 
 
An intersection between surfaces is usually a twisted curve. The technique described in this article cannot 
solve this kind of intersection. However, it can calculate flat intersections. The straight lines to define the 
intersections can be proposed in the projection plane, and patches constructed on them which have their 
intersection with the lines proposed.  
Section 3  described how to make contiguous patches using one of their sides. The next step is to be able to 
define a different line as the boundary between patches at any time. If it is possible to change the position of a 
single vertex control point while keeping the same NURBS, it will then be possible to change the position of a 
second point, while maintaining the same surface. When the new outline has been defined in this way, a 
different NURBS surface can be assembled, with the continuity conditions that may be necessary.  

 
Figure 11. Location of intersections 

 
 6.1  Redefining a patch. Changing a vertex control point 
 
NURBS surfaces have to have end control points, as was said in Chapter 2.1. Assuming that the point being 
changed is that of vertex C00, the same surface needs to be redefined with vertices C'00, C03 and C30. From 
these points, the remaining plane control points can be calculated using expression (11). The values of the 
points and parameters related with side C03-C30 do not change, as shown in Section 3.1.See Figure 12.a 
Point C'00 belongs to projection plane Q, so will have its corresponding barycentric coordinates u'00 and v'00. 
From these coordinates, the corresponding NURBS point N'00 is calculated. This point will be the new P'00. 
See Figure 12.a 



Intermediate control point C02 will change automatically to position C'02, and its weight should change as well. 
The new point P'02 must be contained in the el plane P03, P02, P12 to keep the same tangential plane at P03. 
Calculating the intersection between that plane and line OC'02 will give the new position P'02. The same idea 
enables calculation of point P'20 – which needs to be in the plane P30-P20-P21 – and P'11 – which needs to be in 
the plane P21-P12-P11. See Figure 12.b 
When the P'ij values have been obtained, the corresponding λ'ij values can be obtained simply using formula 
(11). 
The only thing left is determine the position of P'10 and P'01. The side corresponding to P'00-P03 is defined by 
the points P'00-P'01-P'02-P03, all of which are known except P'01. Taking any point K on the line C'00-C03, we can 
calculated its associated point N on the surface, for the old patch. As the same position N is required for the 
new patch, the following equation is solved (see Figure 12.c) 
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The values uk,vk are the barycentric coordinates of K in the new triangle C'00-C03-C30 . As K is on the side C'00-
C03 its barycentric vk is therefore zero. In expression (20) everything is known except λ'01, the unknown value 
to be found. If projection point O is at infinity, the following equation will be resolved: 

       vkuk,03vkuk,02vkuk,01vkuk,00 BP'+BP'+BP'+BP'=N 03020100  (21) 

 
Resolving for P'01. P'10 would be calculated in the same way. 

 
 

Figure 12. Patch intersection 
 

 7  Conclusions 
 
This article has defined a new method for geometric design of spatial structures. This method allows the 
designer to work in a plane instead of three spatial dimensions, also obtaining a structure which is completely 
free.  
The final geometry of the structure is provided by a NURBS, which is especially suitable for design because of 
its flexibility, and can also be adapted to more complex designs by using a patch definition. 
As well as monolayer structures, this method can also create double-layered spatial structures. In either case, 
the only tasks the user needs to perform are the design of a flat framework mesh and definition of the final 
NURBS surface. The whole structure is fully defined in a single plane. 
The rest of the process can be fully automated using CAGD techniques, which resolve both the problems of 
strut positioning and those of continuity between patches. It also allows graphic edition of the whole structure, 
changing both the positions of the projection point and the different control points defining the surface, and the 
location of the nodes or the introduction of new points comprising the flat mesh to be projected. 
 



 
 

 
 
 

Figure 13. Examples 
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