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Summary: Rot-Umbela manipulations permit conventional double-layer grids (DLG) to be transformed into tensegrity 

grids. By means of this method, two new tensegrity modules (Quastrut and Sixstrut) were already discovered. The aim 

of this work is to compare the behavior of the new family of Double-Layer Tensegrity Grids (DLTG) obtained by the 

juxtaposition of the Quastrut in some of its variations depending on enantiomorphic variants (e.g. monogyre Vs. 

racemic), orientations (e.g. 0º Vs. 90º) and configurations (e.g. open Vs. closed). It will be possible to determine which 

DLTG performs better taking into account their resistance, structural efficiency, deflection, etc. Furthermore, analysis 

of their mechanisms and states of self-stress could help to understand their structural characteristics better. 

Deployability will be revealed as one of the most challenging and interesting potentials of these DLTGs. 
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INTRODUCTION 

Tensegrity systems are considered as self-stressed and 

auto-stable structures composed by isolated components 

in compression inside a net of continuous tension, in such 

a way that the compressed members (usually bars or 

struts) do not touch each other and the pre-stressed 

tensioned members (usually wires or even tensile 

membranes) delineate the system spatially [1]. 

It has been recently proved that the use of Rot-Umbela 

Manipulations, applied to Double-Layer Tensegrity Grids 

(DLTGs) produces a transformation to some other new 

and unknown, until now, tensegrity grids [2]. A closed 

observation of the new grids permits new kinds of 

tensegrity modules to be obtained, baptized as Quastruts 

and Sixstruts, integrated in the novel grids [3]. 

All the modules of the family are characterized for having 

some nodes with just two wires meeting at them, which 

simplifies the configuration of the nodes (and thus their 

costs) and makes any type of deployment of the module 

easier. A brief description of these components is 

provided, as well as some information about their static 

analysis, states of self-stress and internal mechanisms. 

Nowadays, the principal use taken into consideration for 

Quastruts and Sixstruts is the generation of DLTGs 

(which is actually its origin), but these modules could also 

be implemented for the design of another kind of 

structures, like pedestrian bridges or light canopies. 

The principal aim of this work is to compare the behavior 

of the new families of DLTGs obtained by the 

juxtaposition of the Quastrut in some of its variations 

depending on enantiomorphic variants (e.g. monogyre Vs. 

racemic), orientations (e.g. 0º Vs. 90º) and configurations 

(e.g. open Vs. closed). Besides, it would also be 

interesting to compare them with other DLTGs already 

existing and well known in the tensegrity field. 

In such a way, and after analyzing their advantages and 

disadvantages, it will be possible to determine which 

DLTGs perform better taking into account their 

resistance, structural efficiency, deflection, etc. 

 

ROT-UMBELA MANIPULATIONS 

In the case of a grid or tessellation, a Rot-Umbela 

Manipulation is defined as a transformation of the vertex 

of a grid in such a way that it originates an “atomization” 

of a node, converting it to several nodes linked together 

and usually rotated around the original vertex. Final shape 

and rotation would be defined by the initial conditions 

imposed to geometry and state of self-stress applied to the 

structure. For any vertex of valence v, a new polygon of u 

sides could be generated around it, saying that it has an 

‘umbela valence’ u. Vertex of Fig. 01 is processed with a 

‘natural’ umbela valence (u=v=6) and a rotation of 120º. 

 

Fig. 01 Rot-Umbela manipulation in a grid. 
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GENERATION OF QUASTRUTS AND SIXSTRUTS 

By means of applying a Rot-Umbela Manipulation to the 

DLTG 4
4
-Be1-Te1 (nomenclature according to [4]), 

originally patented by Raducanu and Motro [5] under the 

name “2-way grid” and composed by expanders V22 (Fig. 

02), it is possible to generate three new shapes inside the 

original grid.  

 

Fig. 02 DLTG 4
4
-Be1-Te1 or “2-way grid” 

 

These subsystems, when isolated, produce three 

innovative module configurations depending on the 

arrangement of the cables (struts always keep the same 

position for all types). Because they are composed of 

groups of four struts, they will be baptized as Quastruts 

(Fig. 03).  

Quastrut-S: The first configuration of cables, in Fig. 03.a, 

is a module composed by four struts (1-7, 2-6, 3-8, 4-5) 

overlapping each other, an S-shape net of cables on the 

top layer (1-3, 3-2, 2-4, forming 90º between them, in 

dark blue lines), and another S-shape net of cables on the 

bottom layer (6-7, 7-5, 5-8, in clear green lines) rotated by 

180º relative to the superior one. Four more wires in the 

periphery of the module (1-5, 2-8, 3-6, 4-7), close the 

sides of the module in the plan view. This module is super 

stable, as it is stated by the fact that its force density 

matrix is positive definite [6], having five mechanisms 

(m=5) and just one state of self-stress (s=1). 

Quastrut-Z: The second variation, in Fig. 03.b, occurs 

when horizontal wires form a Z-shape (5-8, 8-6, 6-7 in 

bottom layer and 3-1, 1-4, 4-2 in top layer). Coordinates 

are the same as those of Quastrut-S, but the topology is 

different. However, this original configuration is not 

stable by itself, having four internal mechanisms (m=4) 

and no state of self-stress (s=0) capable to stiffen the 

structure. Thus, it cannot be considered a tensegrity 

structure on its own, but only when combined with other 

modules or stiffen by additional components. 

Quastrut-S-Z: The third variation can be created when 

both configurations exposed above are mixed together. 

For instance, the bottom wires form a Z-shape while the 

top wires form an S-shape (or vice versa). 

Another new tensegrity module can be obtained by 

applying a Rot-Umbela Manipulation to the DLTG 3
6
-

Be1-Te1 or “3-way grid”. The result is the so-called 

Sixstrut (because of the six bars that it composes), another 

super stable tensegrity with just one state of self-stress 

(s=1) and six mechanisms (m=6). Some other new 

analogous structures have been discovered with different 

number of struts (Octastrut, Decastrut, Dodecastrut, etc.) 

 

 

Fig. 03 a) Quastrut-S and b) Quastrut-Z. 

 

COMPOSITION OF NEW DLTGS 

It is easily conceivable to create a wide range catalogue of 

different DLTGs attending to the combinations of all of 

them. However, in this work only compositions made 

with the Quastrut-S and Quastrut-Z will be analyzed, as 

they are interesting enough to develop a significant case 

study. 

All the modules exposed in the previous section, 

including the Quastruts that are being studied, are 

enantiomorphic, so it is possible to use a “monogyre” 

composition with either dextrorse or sinistrorse modules 

(d and s respectively in Fig. 04 and Fig. 05), or a 

“racemic” arrangement, i.e. using both dextrorotatory and 

levorotatory forms of the modules. 

Enantiomers of Quastruts can also be rotated in the grid, 

aligning them at 0º or 90º, and thus conforming different 

grids by combining these two variations. 

Even though there are multiple possibilities to combine 

the Quastruts and their variations, only four different 

possibilities for each one of them (Quastrut-S and 

Quastrut-Z) will be taken into account in order to keep the 

scope of the study manageable.  

 Type 1: Monogyre, rotation 0º. 

 Type 2: Monogyre, rotation 0º and 90º. 

 Type 3: Racemic, rotation 0º 

 Type 4: Racemic, rotation 0º and 90º 

Classification of any tensegrity structure can be done 

depending on its class k (maximum number of struts 

concurring to the same joint). While types 1 and 4 are 

class 2, types 2 and 3 are class 4.
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Fig. 04 DLTGs obtained with Quastruts-S 

 

Fig. 05 DLTGs obtained with Quastruts-Z
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The graphical representations of these grids are shown in 

Fig. 04 (for Quastruts-S) and Fig. 05 (for Quastruts-Z). 

For each of them, two variants have been considered:  

 o) Open or Original one, just by juxtaposition of 

the modules. 

 c) Closed or Covered one, by addition of cables 

to top and bottom layers to “fill the gaps” and 

reinforce the grid.  

For the comparison of the grids, all of them have been 

designed flat and composed by 5x5 modules, each module 

being 2x2m in plan view and a total height of 1,5m. As a 

result, all the grids measure 10x10m with a depth of 1,5m. 

DESIGN CRITERIA 

Oncethe geometry of the DLTGs have been defined, as 

explained in the previous section, the boundary conditions 

must be fixed. Grids are simply supported at all the nodes 

lying on the boundaries of the lower layer. 

After several trials, an initial set of conditions was 

established for accomplishing a feasible comparison of 

the behavior of the structures.  

The material of all elements was steel (E=210000MPa, 

=7850kg/m
3
), with different elastic limits for struts 

(fy=355MPa) and cables (fy=500MPa). Struts were 

defined with a round hollow structural section 

HSS60.3x6.9 (A=1008mm
2
) and cables with a nominal 

diameter of 10mm (A=78.5mm
2
). 

Related to the load hypothesis, a simple combination of 

Ultimate Limited States (ULS) actions are considered: G 

+ Q + S where (G) is the self-weight of the structure, (Q) 

the active loads and (S) the self-stress. As this study is a 

comparison between the behaviors of the DLTGs and not 

a real design process, at this stage no partial safety factors 

were considered. 

Self-weight (G) is applied automatically by the program 

by defining section areas, lengths and densities of the 

different elements and considering a gravity acceleration 

of -1 in Z direction.  

Application of active loads (Q) is distributed as a set of 

nodal masses among all the free nodes of the structure 

(those who are not supports). For this study, two uniform 

loads are applied, each one of 1kN/m2. The first one 

related to the typical roof live load and the second one 

responding to ground snow load. Because these 

conditions are certainly severe for such a structure, 

permanent loads of the covering roofing were considered 

negligible compared to them. 

For the self-stress (S), a general and not optimized state of 

self-stress is applied to all the cables of the structure by 

introducing a pretension of 5000N (approximately 12.5% 

of their yield strength). 

CALCULATIONS AND RESULTS 

First of all, a study of the mechanisms and states of self-

stress of each type of DLTG could help to understand 

their structural characteristics better. A numerical method 

to obtain the rank of the equilibrium matrix [7] applied to 

4x4 DLTGs proves that the number of states of self-stress 

is significantly different in type S4 (s=8) and similar in 

the other cases (s=16 for S1 and s=17 for S2 and S3). The 

number of mechanisms is discordant enough for each 

type: 45, 53, 29 and 93 for DLTGs S1, S2, S3 and S4 

respectively. 

Static analyses of the structures have been carried out 

using the software ToyGL [8], a real time implementation 

of a discrete element method (mass-spring systems). This 

is an explicit dynamic nonlinear analysis, although for our 

purpose it was also used as a versatile method for the 

design and static analysis of tensegrity systems. It permits 

structures in real time to be created and modified, with a 

direct feedback on their behavior. It has been proved to be 

especially adequate for the design and calculation of 

tensegrity structures [8]. 

When working with this program, for automatically 

processing the input of the data (from an AutoCad file) 

and output of the results (to an Excel file), a customized 

set of routines have been developed by the authors of this 

contribution. 

Weights of the grids are sensibly equivalent (maximum 

difference of 10%), as all of them have the same number 

of struts (100), which are the heaviest elements of the 

structure. The lightest DLTG is the S3 (2297kg) and the 

heaviest is the Z4cc (2562kg), with an average weight of 

23,7kg/m
2
. 

Fig. 06 shows the behavior of all the DLTGs in terms of 

deflection (in cm) as well as maximum and minimum 

forces (in kN). As can be observed, there are three grids 

that collapse. This is not due to the lack of resistance to 

the applied loads, but to the lack of stability and self-

equilibrium. The rest of the structures are able to support 

the external loads, but among them the minimum 

deformations correspond to the grid S1 (2.9cm) and S1c 

(2.8cm). For the other types these values are between 

approx. 6 and 40 cm. 

 

Fig. 06 Graphic of deflections and forces in the DLTGs. 

Not considering collapsed structures, maximum forces (in 

tension) for the cables are between 29kN (again in DLTG 

S1 and S1c) and 131kN (for type Z2). Values higher than 

approx. 40kN would mean the plasticity of the cables, 
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because with a diameter of 10mm and a cross-sectional 

area of 78.5mm
2
 their stress would overpass the yield 

point (500Mpa).  

Minimum forces (in compression) for the struts are 

between -26kN (for type Z4c) and -160kN (for type Z3). 

In this case, the accepted limit is not defined by the cross-

sectional resistance to uniform compression, but by the 

buckling resistance of the struts. Calculations have been 

made according to the Eurocode 3 (Design of steel 

structures). Following the procedure exposed in section 

6.3, for a HSS60.3x6.9 (A=1008mm
2
, I=3.77E5 mm

4
), 

partial factor M0=1.05, fy=355MPa and considering 

hinged-hinged connections, the maximum compression 

load could not be higher than 783kN (this value has not 

taken  into account any safety factor as the main purpose 

of the study is not a final design but a general comparison 

between the different DLTGs). 

Results of the calculations are also represented in Fig. 07, 

where numbers of collapsing members for each case is 

shown. It can be clearly observed that the number of 

struts that collapse under buckling is not significant. 

Apart from the grid S4, which has been clearly proved 

that collapses, only another three grids have some 

member failing under buckling: Z2, Z3 and Z3c (with 1, 4 

and 3 struts respectively). 

 

Fig. 07 Graphic of collapsing members of the DLTGs. 

This figure also illustrates the number of “broken” cables 

that reach their yield limit (the term “broken” is not 

precise, but it serves to point out the most solicited 

members in tension). It is worth to remark that, again, 

grids S1, S1c and Z1 are the only ones with no collapsed 

cables. It can also be noted that, related to slacking cables 

(cables with null tension), even if their behavior is still 

good (between 20 and 40 slacking cables), there are some 

other DLTGs with similar or even better response. 

Slacking of cables is not an important problem from a 

mechanical point of view, but they can cause vibrations in 

case of wind and are not aesthetically pleasant. 

It is straightforward to conclude that the best designs for 

this study case corresponds to DLTG S1 and S1c, 

composed by modules of Quastrut-S in juxtaposition, 

with no rotations and no reflections. Thus, in order to 

better understand  the behavior of this structure, a deeper 

analysis of the grid S1c is going to be exposed.  

Fig. 08 presents the distribution of forces of this structure, 

with the compressive forces (negative, downwards) and 

tensile forces (positive, upwards) of their different types 

of elements: struts (Web_Strut_Layer), top and bottom 

chords with the original cables of grid S1 (Upper_Lyr and 

Lower_Lyr), diagonal cables (Web_Wire_Lyr) and the 

additional cables included in the grid S1c for enhancing 

stiffness (Upper_Lyr_Triang and Lower_Lyr_Triang). As 

can be seen, these last additional groups of tension 

elements barely make any relevance in the overall 

disposition of forces of the structure, although obviously 

they contribute somehow to reduce the deflection and the 

maximum values of forces in struts and cables. 

 

Fig. 08 Distribution of forces in the DLTG Quastrut-S 1c 

It is be possible to optimize this DLTG by changing a few 

parameters. First of all, all the cables between supporting 

nodes can be erased because they do not bear any load but 

their own self-stress. Although increasing the tension of 

the upper cables seldom reduces the deflection, doubling 

the pre-stress in the diagonal wires reduces it almost 20%, 

which can reach up to 50% by imposing upon them a 

pretension of 20000N. It also reduces the number of 

slacking cables from 39 to 30. Another possibility, 

perhaps the most intuitive, is to raise the pre-stress of the 

lower chord, which reduces the deflection in 13% if the 

pretension reaches 10000N (decreasing the number of 

slacking cables and maximum/minimum forces in 

elements), or in 25% if it goes up to 20000N. A 

combination of both options, up to 20000N in each type 

of cable, would leave the total deflection in 1cm (64% 

reduction), 12 slacking cables (69% reduction) without a 

significant increase in the tension or compression carried 

by the members of the grid.  

Optimization of the struts can be performed by changing 

the cross-section of those ones that bear low compression 

forces. 46 of them receive less than 26000N, so they are 

not in risk of buckling if their section is substituted by a 

HSS48.3x3.7 (A=480mm
2
, I=1.22E5 mm

4
). This change 

reduces the total weight by 25%, without any harm to the 

general behavior of the structure. 

 

CONCLUSIONS 

An analysis has been carried out to compare the behavior 

of a new family of DLTG obtained by the juxtaposition of 

the Quastrut in some of its variations. It is probably not a 
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coincidence that the best behaviors correspond to those of 

the original DLTGs obtained directly from the Rot-

Umbela Manipulations (DLTG Quastrut-S1 and DLTG 

Quastrut-Z1). However, what  is interesting  is the fact 

that these structures are class 2, when apparently a class 4 

(grids type 2 and 3) should be stiffer and stronger. As 

expected, there is a certain influence of the number of 

states of self-stress and mechanisms in the overall 

response of these structures; grids with less states of self-

stress and more mechanisms are more inclined to 

collapse, as happens with type S4. 

In general, DLTG generated with Quastruts-S behave 

better than those composed by Quastruts-Z. This is more 

than probably due to the fact that the Quastrut-S is super 

stable by itself, while Quastrut-Z is not, and can only be 

in equilibrium when inserted in a bigger and more 

complex structure and supported properly. 

It also looks clear that the improvement of any grid can be 

easily achieved by just adding a few cables on the top and 

bottom layers. However, real optimization of the grids is 

obtained by changing the initial pre-stress of the cables 

and reducing the cross-section areas of the least loaded 

struts. As a result, it is possible to obtain a light structure 

of 17.6 kg/m2, composed by juxtaposition of Quastruts-S, 

with no rotation or reflection, with an acceptable 

resistance to self-weight and external active loads.  

 

FURTHER RESEARCH 

A deeper study of the self-stress of each grid, the choice 

of its level, the design of the elements (cross-section 

areas, types of section, materials, etc.) will be necessary 

to optimize the design of the DLTGs. Besides, it would 

also be interesting to compare them under exactly the 

same conditions as other DLTGs already existing and 

well known in the tensegrity field. 

It is not the intention of the present work to analyze in 

depth, but yes to mention, an interesting performance of 

the Quastruts: deployability. Physical models prove that 

their singular topology and geometry may lead to the 

consideration of several ways of folding and unfolding the 

grids composed by these modules.  

A first way of folding Quastrut-S is shown in the Fig. 

09.b, and even if it cannot be appreciated in pictures, 

release of the element that fixes the module in that flat 

configuration makes the module come back to its original 

unfolded shape (Fig. 09.a) automatically thanks to the 

elastic behavior of the tendons. A second way of folding 

is shown in Fig. 09.c and d, where the first one is the step 

in which the edges of the bottom (i.e. 6 and 8) and top 

cables (i.e. 1 and 4) that have an S-shape are detached 

from the struts, whose edges (i.e. 1’, 4’, 6’ and 8’) run 

through those cables until they approach the adjacent 

vertices of the other struts edges (i.e. 2, 3, 5 and 7). 

Second step is clearly illustrated in Fig. 09.d. 

These characteristics make an in depth  analysis of the 

possible deployability and foldability of the DLTGs 

exposed in this work feasible. 

 

Fig. 09 a) Quastrut-S in unfolded position. b) Folding by 

elasticity, pushing down. c) Folding by disconnection of 

edges of the S and approaching vertices, first step. d) 

Second step. 
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